

Datasheet: 4745-1051

Description:	SHEEP ANTI GREEN FLUORESCENT PROTEIN		
Specificity:	GREEN FLUORESCENT PROTEIN		
Format:	Purified		
Product Type:	Polyclonal Antibody		
Isotype:	Polyclonal IgG		
Quantity:	1 ml		

Product Details

Applications

This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols.

	Yes	No	Not Determined	Suggested Dilution
Immunohistology - Frozen				
Immunohistology - Paraffin			•	
ELISA	-			
Western Blotting			•	
Immunofluorescence				

Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the product for use in their own system using the appropriate negative/positive controls.

~27 kDa protein derived from the jellyfish Aequorea victoria. GFP fluoresces green (509nm) when

excited by blue light (395nm) and is commonly used as a marker of gene expression.

fluorescent protein (GFP), a

Specificity	Sheep anti Green Fluorescent Protein antibody recognizes gree		
External Database Links	UniProt: P42212 Related reagents		
Immunogen	Green fluorescent protein from Aequorea victoria.		
Approx. Protein Concentrations	IgG concentration 5.0 mg/ml		
Preservative Stabilisers	0.09% Sodium Azide (NaN ₃)		
Buffer Solution	Phosphate buffered saline		
Preparation	Purified IgG prepared by affinity chromatography on Protein G.		
Product Form	Purified IgG - liquid		

References

- 1. Collins, R.T. *et al.* (2010) MAZe: a tool for mosaic analysis of gene function in zebrafish. <u>Nat Methods</u>. 7: 219-23.
- 2. Wu, L. *et al.* (2011) Properties of a distinct subpopulation of GABAergic commissural interneurons that are part of the locomotor circuitry in the neonatal spinal cord. <u>J Neurosci. 31 (13):</u> 4821-33.
- 3. Knipe, L. *et al.* (2010) A revised model for the secretion of tPA and cytokines from cultured endothelial cells. <u>Blood. 116: 2183-91.</u>
- 4. Shneider, N.A. *et al.* (2009) Gamma motor neurons express distinct genetic markers at birth and require muscle spindle-derived GDNF for postnatal survival. <u>Neural Dev. 4: 42.</u>
- 5. Soza-Ried, C. *et al.* (2008) Maintenance of thymic epithelial phenotype requires extrinsic signals in mouse and zebrafish. <u>J Immunol. 181: 5272-7.</u>
- 6. Lopez, K.A. *et al.* (2011) Convection-enhanced delivery of topotecan into a PDGF-driven model of glioblastoma prolongs survival and ablates both tumor-initiating cells and recruited glial progenitors. <u>Cancer Res. 71: 3963-71.</u>
- 7. League, G.P. and Nam, S.C. (2011) Role of kinesin heavy chain in Crumbs localization along the rhabdomere elongation in *Drosophila* photoreceptor. <u>PLoS One. 6:e21218.</u>
- 8. Siembab, V.C. *et al.* (2010) Target selection of proprioceptive and motor axon synapses on neonatal V1-derived Ia inhibitory interneurons and Renshaw cells. <u>J Comp Neurol</u>. 518: 4675-701.
- 9. Srinivasan, S. *et al.* (2012) The receptor tyrosine phosphatase Lar regulates adhesion between Drosophila male germline stem cells and the niche. <u>Development. 139: 1381-90.</u>
- 10. Haberlandt, C. et al. (2011) Gray matter NG2 cells display multiple Ca2+-signaling pathways and highly motile processes. PLoS One. 6: e17575.
- 11. Cheung, L.S. *et al.* (2013) Dynamic model for the coordination of two enhancers of broad by EGFR signaling. <u>Proc Natl Acad Sci U S A. 110: 17939-44.</u>
- 12. Li, X. *et al.* (2013) Temporal patterning of Drosophila medulla neuroblasts controls neural fates. <u>Nature. 498: 456-62.</u>
- 13. Behnia, R. *et al.* (2014) Processing properties of ON and OFF pathways for *Drosophila* motion detection. <u>Nature</u>. 512: 427-30.
- 14. de Nooij, J.C. *et al.* (2015) The PDZ-domain protein Whirlin facilitates mechanosensory signaling in mammalian proprioceptors. <u>J Neurosci. 35 (7): 3073-84.</u>
- 15. Scotti, M. *et al.* (2015) A Hoxa13:Cre mouse strain for conditional gene manipulation in developing limb, hindgut, and urogenital system. <u>Genesis</u>. 53 (6): 366-76.
- 16. Sun, G.J. *et al.* (2015) Latent tri-lineage potential of adult hippocampal neural stem cells revealed by Nf1 inactivation. Nat Neurosci. 18 (12): 1722-4.
- 17. Schlegel, P. *et al.* (2016) Synaptic transmission parallels neuromodulation in a central food-intake circuit. <u>eLife 2016;10.7554/eLife.16799</u>
- 18. Crouch, E.E. *et al.* (2015) Regional and stage-specific effects of prospectively purified vascular cells on the adult V-SVZ neural stem cell lineage. <u>J Neurosci. 35 (11): 4528-39.</u>

Further Reading

1. Adams, K.L. *et al.* (2015) Foxp1-mediated programming of limb-innervating motor neurons from mouse and human embryonic stem cells. Nat Commun. 6: 6778.

Storage

Store at +4°C or at -20°C if preferred.

Storage in frost-free freezers is not recommended.

This product should be stored undiluted. Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use.

Shelf Life

18 months from date of despatch.

Health And Safety Information

Material Safety Datasheet documentation #10040 available at: 10040: https://www.bio-rad-antibodies.com/uploads/MSDS/10040.pdf

Page 2 of 3

Related Products

Recommended Secondary Antibodies

Rabbit Anti Sheep IgG (H/L) (5184-2304...) Biotin

Donkey Anti Sheep IgG (STAR88...) <u>DyLight®488</u>, <u>DyLight®549</u>, <u>DyLight®649</u>,

FITC, HRP

Recommended Useful Reagents

RABBIT ANTI BLUE FLUORESCENT PROTEIN (AHP2985)

RABBIT ANTI CYAN FLUORESCENT PROTEIN (AHP2986)

RABBIT ANTI RED FLUORESCENT PROTEIN (AHP2987)

MOUSE ANTI mCHERRY (MCA6020)

RABBIT ANTI mCHERRY (AHP2326)

North & South Tel: +1 800 265 7376

America Fax: +1 919 878 3751

+1 800 265 7376 **Worldwide**

Email: antibody_sales_us@bio-rad.com

Tel: +44 (0)1865 852 700

Europe

Tel: +49 (0) 89 8090 95 21 Fax: +49 (0) 89 8090 95 50

Fax: +44 (0)1865 852 739

Email: antibody_sales_uk@bio-rad.com

Email: antibody_sales_de@bio-rad.com

'M316697:180607'

Printed on 21 Jun 2018

© 2018 Bio-Rad Laboratories Inc | Legal | Imprint